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ABSTRACT

The present paper is devoted to obtain the Bayes estimators of the unknown
parameters of the Pareto Type II distribution under the assumptions of gamma
priors on both the shape and scale parameters are considered. The Bayes es-
timators cannot be obtained in explicit forms. So we propose Markov Chain
Monte Carlo (MCMC) techniques to generate samples from the posterior dis-
tributions and in turn computing the Bayes estimators. Point estimation and
confidence intervals based on maximum likelihood is also proposed. The ap-
proximate Bayes estimators obtained under the assumptions of informative as
well as non-informative priors, are compared with the maximum likelihood es-
timators using Monte Carlo simulations. One real data set has been analyzed
for illustrative purposes.

Keywords: Pareto Type II Distribution, Record Values, Bayesian Estimation,
Simulation and MCMC Techniques.

1 Introduction

In the present time, the theory of record values and its applications are widely
used in data analysis, espically in the study of stock market for making pre-
dictions about the price of a stock which may be higher or lower then the
prior one. Ahsanullah (1995) and Arnold et al. (2011) have provided extensive
use of record values for various real life situations. Nigm and Hamdy (1987)
have mentioned that the Pareto Type II Distribution is within the category
of distributions with decreasing failure rates. It has been observed by Dupuis
and Tsao (1998), Castillo and Hadi (1997), Chhetri et al. (2017), Aslam et al.
(2020) and Kerbaa et al. (2023) etc. and many more have been observed that
Pareto Type II Distribution is widely applicable in the fields of engineering, bi-
ology, medicine and others, and more over this distribution is quiet helpful for
the purpose of modelling and analysis life time data. In order to compute the
credible intervals of the unknown parameters of the Pareto Type II distribution
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under the upper record values, the study provides Bayes estimates via Markov
Chain Monte Carlo (MCMC) approaches. The future scope of this study would
be on distribution in terms of extention of parameters along with the extention
of Monte-Carlo techniques like Hamiltonion Monte-Carlo (HMC), Transitional
Markov Chain Monte Carlo (TMCMC) and Transdimensional Transformation
Markov Chain Monte Carlo (TTMCMC) techniques etc. Let X3, X, X3, ..., X},
be a series of independent random variables with cumulative distribution func-
tion F'(z) and probability density function f(x).

If Y; > Y;_1;5 > 1, then X is referred to as an upper record and is de-
noted by Xp(;) in the set Y, = max(Xy, Xo, X3,..., X,,), where n > 1. Let
Xvay, Xve) Xu@d), - Xu(n) be the first upper record values of size n resulting
from a series of independent and identically Pareto variables with the proba-
bility density function

f@)y=aX @+ 0" 2>0,9,A>0 (1.1)

And cumulative distribution functiion
Fl)=1=-X(x+\)7; x>0;7,A>0 (1.2)

Where A is scale and ~ is shape parameter.

2 Estimation of Parameters under Maximum
Likelihood Estimation(MLE)

Suppose that x = z,.1), Ty(2), ---s Tu(n) be the first upper record values of size n
from Pareto Kind 1l distribution. The likelihood function for observed record
z given by,

n—1

l(f% ME) - f(xu n )
Where f(.) and F(.) are given, respectively by (1.1) and (1.2). Substituting
f(.) and F(.) in equation (2.1), we get

(2.1)

n

Uy, Mz) = 7"V (@) + X7 [ [@uiy + 8)7 (2.2)

i=1
Log likelihood function may be then written as

L(v, Az) = logl(v, A|z)
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i.e, L(v,Az)=nlogy + vlog\ — logvy(x Zlog (2.3)

Taking derivatives with respect to 7 and A of (2.3) and equating them to
zero, we obtain the likelihood equations for v and A to be

OL(v,Nz) n
——————— = — + log\ — log(xym) + A 2.4
N " (@ugn) +A) (2:4)

n

OL(v,A|lz) v ¥ 1
A e A S S— S 2.5
o\ A (:L‘u(n) + A) Z:ZI (Cﬁu(i) +A) (2.5)

The equations (2.4) and (2.5) cannot solve analytically for v and A. Therefore,
we use R software to solve these equations and find the MLE’s of the unknown
parameters v and .

The asymptotic variances and covariances of the MLE for parameters v and
A are given by elements of the inverse of the Fisher information matrix given by

0°L 7 |
OyON

Deleting the expectation operator E, we obtain the estimated asymptotic variance-
covariance matrix for the MLE, as

IU:EI— ij=1,2 (2.6)

1 .
é@m — 5(@'@ [covA(A) cov(ﬁl)\)
( )

A@” é@m sy Leovhg)cov() ]
With PLeAR)
VAL n
52 A2 2.7
5’}/2 72 ( )
OL(v,Nz)  O*L(v,Mz) 1 1 25
YN AT A (m) ) :
O?L(y,Nz)  —v 1 n )
v — 2.
N2 N (T + A)? + ; (@) + V)2 (2.9)

The (1 — «)100% confidence intervals for parameter v and A given by

Y+ Zyjon/var(y) and )\:I:Za/g var(\) (2.10)

where Z,/, is the percentile of standard normal distribution with right-tail
probability «/2.
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3 Estimation of parameters under MCMC

Here, We discuss Bayesian method and MCMC algorithm for computation.
The posterior samples are generated using Metropolis Hastings method. The
Metropolis-Hastings algorithm is one of the most popular MCMC algorithm.
Like other MCMC methods, the Metropolis-Hastings algorithm is used to gen-
erate serially correlated draws from a sequence of probability distributions. The
sequence converges to a given target distribution. which are then utilised to
compute the Bayes point estimates and construct the relevant credible intervals
based on the posterior samples.

Assume the following gamma prior densities for model (1.1).

mlp = { BP0 020 1)
(Al s) = { fr X eap(=s)) N0 (3.2)

The joint prior density of v and A may be written as

(v, A) = T (v]p, @)m2(Alr, 5)

_ a5 FPIN T erp(—qy — sN) (3.3)
['pl'r
The joint posterior density of v and A is
v, Az)m(y, A
(1) = ey (3.4

fo fo (v, A|lz)m (v, A)dydA

Therefore, the Bayes estimate of any functlon of v and A say (v, A), under
square error loss function is

Jo o9 %)\|5L’) (v, A)dydA
Jo fo %Ml‘ v, A)dydA

Now, we utilise the MCMC technique to produce samples from the poste-
rior distribution and then compute the Bayes Estimator of g(y,\) under the
squared error loss(SEL) function. The ratio of two integrals provided by (3.5)
cannot be achieved in a closed form, therefore we use MCMC methods for ap-
proximation. See for example Robert et al. (2010)

§(77 >‘) - E%)\|data[g(77 /\)] - (35)

MCMC Approach
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There are many different MCMC schemes available, and selecting one might
be challenging. Gibbs sampling and the broader Metropolis-within-Gibbs sam-
plers are crucial MCMC subclasses. The benefit of adopting the MCMC tech-
nique over the MLE method is that by building the probability intervals based
on the empirical posterior distribution, we can always get an acceptable inter-
val estimate of the parameters. In fact, using a kernel estimate of the posterior
distribution, the MCMC samples may be used to fully summarise the poste-
rior uncertainty regarding the parameters and any function of the arguments
has the same properties. By multiplying the likelihood by the joint prior, the
equation for the joint posterior up to proportionality may be desired as

(v, A) o< PPN L eap[—(gy + dX\ — Mog(1 — exp(—x, )] +
n—lg 7_1611:p(—xz

11 U (3.6)
P 1— exp(—xu(i))

The posterior distribution of the supplied Eq. (3.6) cannot be analytically
reduced to well-known distributions, making it impossible to sample directly
using conventional methods. However, the plot of the posterior distribution
indicates that it is comparable to the normal distribution. We thus employ the
Metropolis-Hastings technique with the normal proposal distribution to get
random integers from this distribution. The selection of the hyperparameters
(p,q,r and s) that brings (3.6) close to the proposal distribution and definitely
increases the MCMC iteration’s convergence. To select samples from the pos-
terior density functions, we compute the Bayes estimates, and also create the
associated credible interval.

4 Application to Real Data

Interpreting an application to real data involves the process of analyzing and
making sense of the results or output generated by a specific application or
model when it is applied to real-world data. This interpretation is crucial for
understanding the significance, implications, and limitations of the application.
We selected actual data that Choulakian and Stephens (2001) had also utilised.
The data represent the Wheaton River in Carcross, Yukon Territory, Canada,
exceedances of flood maxima (in m3/s). The statistics are excesses for the
years 1958 through 1984. The data are given below

1.7,2.2,14.4,1.1,0.4,20.6,5.3,0.7,13.0,12.0,9.3,1.4,
18.7,8.5,25.5,11.6,2.2,39.0,0.3,15.0,14.1,22.1,1.1,2.5,
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14.4,1.7,37.6,0.6,11.0,7.3,22.9,1.7,0.1,1.1,0.6,9.0,

1.7,7.0,20.1,0.4,14.1,9.9,10.4,10.7,30.0,3.6,5.6,30.8,
13.3,4.2,25.5,3.4,11.9,21.5,27.6,36.4,2.7,64.0,1.5,2.5,
27.4,1.0,27.1 ,20.2,16.8,5.3,9.7,7.5,2.5,27.0,1.9,2.8

As a result, we see the following upper record values in the observed data:
1.7,2.2,14.4,20.6, 39, 64 Based on these seven upper record values, we compute
the approximate MLEs and Bayes estimates of v and A using MCMC method.
We use less informative and informative prior on both v and A. Also 95% ap-
proximate MLE confidence intervals and approximate credible intervals based
on MCMC samples, the results are given in table 1. We have done with 1000000
MCMC samples.

density.default(x = exp(MCMCI, 11)) density.default(x = exp(MCMCI, 21))
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Figure 1: Density plot of v and A

The density plot of v provides information about the likelihood or frequency
of different values of 7. It helps in understanding the distribution of the param-
eter v and its shape. Similarly, the density plot of A provides information about
the likelihood or frequency of different values of A. It helps in understanding
the distribution of the parameter A and its shape. Both density plots give in-
sights into the distribution of the parameters v and A\, which are important for
analyzing and interpreting the data.
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(a) Trace plot of v (b) Trace plot of A

Figure 2: Trace plot of v and A

The Figure 2 is the trace plot of the parameter v and A. A trace plot is a
graphical representation that shows the values of a parameter over iterations in
a Markov Chain Monte Carlo (MCMC) simulation. In other words we can say it
provides a visual representation of how the parameters are changing throughout
the sampling process. In these both cases, the trace plot of v indicates how
the value of v changes over iterations and the trace plot of A indicates how the
value of A changes over iterations in the MCMC simulation. It provides insights
into the convergence and stability of the MCMC algorithm for estimating the
parameters v and .

Table 1: Estimates of v and A obtained by MLE and MCMC

Method | Parameter | Point Interval Length

MLEs v 2.3935 | [1.6487,3.1683] | 1.5496

A 5.6822 | [3.3026,8.0618] | 4.7592

MCMC(1) y 1.5070 | [-0.4892,1.0087] | 1.4979

A 1.6915 | [-0.7910,1.5149] | 2.3059

MCMC(2) vy 1.3212 | [-0.3695,1.0052] | 1.3747
A -

1.4259 | [-0.5689,1.1012] | 1.6701

Table 1 provides the approximate maximum likelihood estimates (MLESs)
and Bayes estimates of the parameters v and A using the Markov Chain Monte
Carlo (MCMC) method. It also includes the 95 percent approximate MLE
confidence intervals and approximate credible intervals based on the MCMC
samples. The results in Table 1 are obtained using both less informative and
informative priors on v and A, with 1,000,000 MCMC samples.
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Simulation Study

We created simulated upper record samples from a Pareto Kind Il distribu-
tion to assess how the suggested approaches behaved. To compare the MLEs
and other Bayes estimators as well as to investigate their influence on vari-
ous parameter values using various sample sizes (n), different hyperparameters
(p,q,7,s) and three sets of parameter values (v, \) = (2,3)(2,2)(2.5,2.5). Us-
ing informative prior p = 4,q = 2,r = 0.4 and s = 0.2 together with the less
informative gamma priors for both parameters. In order to calculate the Bayes
estimates, we employed the squared error loss function. Finally, calculate vari-
ous estimations. Results from MLEs and Bayes estimators with informative (in

tables written as MCMC(2)) and less informative priors (in tables written
as MCMC(1)) on both and are presented in Tables 2 — 4.

Table 2: Different Estimators and risk of corresponding estimators when (v, A)

- (27 3)

N MLE MCMC(1) MCMC(2)
v A v A vy A
5 0.7741 0.4248 1.0566 1.2564 0.8869 0.8806
(76.73) | (79.75) | (74.47) | (72.97) | (75.81) | (75.86)
15 0.8964 0.2651 1.2355 1.1249 0.8867 0.8767
(38.34) | (41.73) | (36.85) | (37.31) | (38.39) | (38.43)
o5 1.0860 1.0088 1.1329 1.2862 0.8894 0.8786
(60.76) | (61.12) | (60.55) | (59.88) | (61.71) | (61.76)
a5 1.4949 3.5038 1.1886 1.6401 0.8857 0.8771
(266.39) | (255.63) | (268.73) | (265.34) | (271.25) | (271.32)
50 1.4962 0.5038 1.5674 0.9189 0.8941 0.8220
(82.33) | (88.54) | (81.96) | (85.70) | (85.86) | (86.33)

Note: The first figure represents estimates with the corresponding
average expected loss over sample space (risk of corresponding
estimators reported below it in parentheses).

Table 2, table 3 and table 4 presents different estimators and the corre-
sponding risk of the estimators when the parameters (v, ) are set to (2,3),
(2,2) and (2.5,2.5) . These estimators include the maximum likelihood esti-
mator (MLE), the Bayes estimator with a less informative prior (MCMC(1)),
and the Bayes estimator with an informative prior (M CMC(2)). The values in
the tables represent the estimates of v and A, along with the average expected
loss over the sample space (risk of the estimators). From the tables, we can
observe that the MLEs and the Bayes estimators based on both the less infor-



Bayesian Estimation for Pareto Type II Distribution using Monte-Carlo Techniques...

99

mative and informative priors provide estimates for v and A. The risk of the
estimators varies for different sample sizes n ranging from 5 to 50. Overall, the
tables provides a comparison of the performance of the different estimators in
terms of their risk corresponding to the estimators.

Table 3: Different Estimators and risk of corresponding estimators when (v, A)

= (27 2)
: MLE MCMC(1) MCMC(2)
2 A Y A v A
5 0.6203 0.0547 1.2338 0.8473 0.8970 0.8926
(7.882) (9.473) (6.892) (7423} (7.336) (7344)
15 1.3151 0.6229 1.4345 1.0811 0.8779 0.8673
(10.67) (11..95) (10.55) (11.00) (11.37) (11.39)
95 1.7149 1.2846 1.5082 1.2616 0.8729 0.8673
(5.729) (6.021) (5.823) (8.202) (6.647) (6.542)
35 0.7384 1.0146 0.8495 1.3353 0.8873 0.8825
(163.25) (161.25) (162.43) (159.12) (162.16) (162.19)
50 0.7474 0.4180 0.8831 0.8757 0.8801 0.8755
(161.57) (163.37) (160.88) (160.92) (160.90) (160.92)

Note: The first figure represents estimates with the corresponding
average expected loss over sample space (risk of corresponding
estimators reported below it in parentheses).

Table 4: Different Estimators and risk of corresponding estimators when (7, )

= (2.5, 2.5)
N MLE MCMC(1) MCMC(2)
vy A y A y A
5 0.6577 0.3617 1.0486 1.2613 0.8979 0.8927
(8.663) | (9.408) | (7.948) | (7.683) (8.187) (8.197)
15 0.6577 0.3617 1.7636 0.7244 0.8846 0.8749
(7.153) | (8.069) | (5.278) | (6.970) (6.568) (6.591)
95 2.3810 8.6560 1.1144 1.6414 0.8994 0.8923
(17.76) | (58.93) | (19.01) | (18.10) (19.53) (19.55)
a5 2.2582 1.8489 1.6395 1.2828 0.8738 0.8671
(3.5699) | (3.1953) | (3.1331) | (3.2291) | (3.6524) | (3.6622)
50 2.0359 2.3450 1.4638 1.3616 0.8889 0.8708
(9.2462) | (9.3989) | (9.4678) | (9.5763) | (10.3498) | (10.3883)
Note: The first figure represents estimates with the corre-

sponding average expected loss over sample space (risk of
corresponding estimators reported below it in parentheses).
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Conclusion

In this study, we address the Bayes estimate of the Pareto Type II distribu-
tion’s unknown parameters when the data are higher record values. Under the
suppositions of squared error loss function, we present the Bayes estimators and
assume the gamma priors on the unknown parameters. The Bayes estimators
can be produced via numerical integration, however they cannot be obtained
in explicit forms. Because of this, we generated posterior sample using the
MCMC approach. We observe the following

1. From the results obtained in Tables 2 — 4. It can be seen that the perfor-
mance of the Bayes estimators with respect to the less-informative prior
is quite close to that of the MLEs.

2. Tables 2 — 4 report the results based on less-informative prior and in-
formative prior, also in these case the results based on using the MHA
are quite similar in nature when comparing the Bayes estimators based
on informative prior clearly shows that the Bayes estimators based on
informative prior perform better than the MLEs, in terms of the risk
corresponding estimator.

3. From Tables 2 —4, it is clear that the Bayes estimators based on informa-
tive prior perform much better than less-informative prior and the MLEs
in terms of the risk corresponding estimator.
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